Studies were performed to identify the receptor that mediates AVP-stimulated phosphoinositide (PI) hydrolysis in cultured rat inner medullary collecting tubule (RIMCT) cells. While the selective V1 receptor agonist [Ho1, Phe2, Orn8] VT has no effect on inositol trisphosphate (IP3) production over the range of 10(-13)-10(-7) M, the selective V2 receptor agonist VDAVP stimulates IP3 production in dose-dependent fashion. Oxytocin stimulates IP3 production in dose-dependent fashion as well. AVP-stimulated phospholipase C activity is not inhibited by the V1 receptor antagonist d(CH2)5Tyr(Me)AVP(10(-7) M) but is eliminated by the V2 receptor antagonist d(CH2)5DTyr(Et)VAVP (10(-7) M). Similarly, the response to oxytocin is eliminated by the V2 receptor antagonist. The selective oxytocin receptor agonist [Thr4, Gly7] oxytocin does not stimulate cAMP production in RIMCT cells but does promote PI hydrolysis. The selective oxytocin receptor antagonist desGlyNH2d(CH2)5[Tyr(Me)-Thr4]OVT (10(-7) M) does not inhibit AVP-stimulated cAMP production but eliminates IP3 production in response to AVP or the V2 receptor agonist VDAVP. These studies demonstrate that AVP or a V2 receptor agonist stimulate PI hydrolysis in cultured RIMCT cells via occupancy of the oxytocin receptor.
I Teitelbaum
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.