Heart failure (HF) remains a major source of morbidity and mortality in the US. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein βIV-spectrin coordinates local CaMKII signaling. Here, we sought to determine the role of a spectrin-CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks of transaortic constriction [TAC]) induced a decrease in cardiac function in WT mice but not in animals expressing truncated βIV-spectrin lacking spectrin-CaMKII interaction (qv3J mice). Underlying the observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrated that βIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific βIV-spectrin–KO (βIV-cKO) mice showed STAT3 dysregulation, fibrosis, and decreased cardiac function at baseline, similar to what was observed with TAC in WT mice. STAT3 inhibition restored normal cardiac structure and function in βIV-cKO and WT TAC hearts. Our studies identify a spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based “statosome” will be effective at suppressing maladaptive remodeling in response to chronic stress.
Sathya D. Unudurthi, Drew Nassal, Amara Greer-Short, Nehal Patel, Taylor Howard, Xianyao Xu, Birce Onal, Tony Satroplus, Deborah Hong, Cemantha Lane, Alyssa Dalic, Sara N. Koenig, Adam C. Lehnig, Lisa A. Baer, Hassan Musa, Kristin I. Stanford, Sakima Smith, Peter J. Mohler, Thomas J. Hund
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 368 | 90 |
79 | 31 | |
Figure | 391 | 20 |
Supplemental data | 50 | 3 |
Citation downloads | 50 | 0 |
Totals | 938 | 144 |
Total Views | 1,082 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.