Noncoding RNAs are emerging as important players in gene regulation and disease pathogeneses. Here, we show that a previously uncharacterized long noncoding RNA, nexilin F-actin binding protein antisense RNA 1 (NEXN-AS1), modulates the expression of the actin-binding protein NEXN and that NEXN exerts a protective role against atherosclerosis. An expression microarray analysis showed that the expression of both NEXN-AS1 and NEXN was reduced in human atherosclerotic plaques. In vitro experiments revealed that NEXN-AS1 interacted with the chromatin remodeler BAZ1A and the 5′ flanking region of the NEXN gene and that it also upregulated NEXN expression. Augmentation of NEXN-AS1 expression inhibited TLR4 oligomerization and NF-κB activity, downregulated the expression of adhesion molecules and inflammatory cytokines by endothelial cells, and suppressed monocyte adhesion to endothelial cells. These inhibitory effects of NEXN-AS1 were abolished by knockdown of NEXN. In vivo experiments using ApoE-knockout mice fed a Western high-fat diet demonstrated that NEXN deficiency promoted atherosclerosis and increased macrophage abundance in atherosclerotic lesions, with heightened expression of adhesion molecules and inflammatory cytokines, whereas augmented NEXN expression deterred atherosclerosis. Patients with coronary artery disease were found to have lower blood NEXN levels than healthy individuals. These results indicate that NEXN-AS1 and NEXN represent potential therapeutic targets in atherosclerosis-related diseases.
Yan-Wei Hu, Feng-Xia Guo, Yuan-Jun Xu, Pan Li, Zhi-Feng Lu, David G. McVey, Lei Zheng, Qian Wang, John H. Ye, Chun-Min Kang, Shao-Guo Wu, Jing-Jing Zhao, Xin Ma, Zhen Yang, Fu-Chun Fang, Yu-Rong Qiu, Bang-Ming Xu, Lei Xiao, Qian Wu, Li-Mei Wu, Li Ding, Tom R. Webb, Nilesh J. Samani, Shu Ye
Expression of