WNT proteins drive the development and maintenance of many tissues, including bone. It is less clear which of the many WNT proteins act on bone or where these WNTs act in the skeleton; however, loss-of-function mutations in WNT1 cause bone fragility in children and adults. In this issue of the JCI, Joeng and colleagues demonstrate that bone formation is under the control of WNT1 produced by osteocytes, the cells that reside deep in the bone matrix and form dendritic networks. The implication of WNT1 in the control of bone formation identifies a potential new target for the treatment of low bone mass disorders, such as osteoporosis.
Frank Rauch
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 422 | 45 |
96 | 29 | |
Citation downloads | 61 | 0 |
Totals | 579 | 74 |
Total Views | 653 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.