Abstract
Blood vessels have a unified mission to circulate blood throughout the body; however, they have additional diverse and specialized roles in various organs. For example, in the liver, discontinuous sinusoids, which are fenestrated capillaries with intercellular gaps and a fragmented basement membrane, facilitate delivery of macromolecules to highly metabolic hepatocytes. During embryonic development, discontinuous sinusoids also allow circulating hematopoietic progenitor and stem cells to populate the liver and promote blood cell differentiation. In this issue of the JCI, GĂ©raud et al. describe an essential role for the transcription factor GATA4 in promoting the development of discontinuous sinusoids. In the absence of liver sinusoidal GATA4, mouse embryos developed hepatic capillaries with upregulated endothelial cell junction proteins and a continuous basement membrane. These features prevented hematopoietic progenitor cells from transmigrating into the developing liver, and Gata4-mutant embryos died from subsequent liver hypoplasia and anemia. This study highlights the surprising and extensive transcriptional control GATA4 exercises over specialized liver vascular development and function.
Authors
Courtney T. Griffin, Siqi Gao
×
Download this citation for these citation managers:
Or, download this citation in these formats:
If you experience problems using these citation formats, send us feedback.