Runt-related transcription factor 1 (RUNX1) is generally considered to function as a tumor suppressor in the development of leukemia, but a growing body of evidence suggests that it has pro-oncogenic properties in acute myeloid leukemia (AML). Here we have demonstrated that the antileukemic effect mediated by RUNX1 depletion is highly dependent on a functional p53-mediated cell death pathway. Increased expression of other RUNX family members, including RUNX2 and RUNX3, compensated for the antitumor effect elicited by RUNX1 silencing, and simultaneous attenuation of all RUNX family members as a cluster led to a much stronger antitumor effect relative to suppression of individual RUNX members. Switching off the RUNX cluster using alkylating agent–conjugated pyrrole-imidazole (PI) polyamides, which were designed to specifically bind to consensus RUNX-binding sequences, was highly effective against AML cells and against several poor-prognosis solid tumors in a xenograft mouse model of AML without notable adverse events. Taken together, these results identify a crucial role for the RUNX cluster in the maintenance and progression of cancer cells and suggest that modulation of the RUNX cluster using the PI polyamide gene-switch technology is a potential strategy to control malignancies.
Ken Morita, Kensho Suzuki, Shintaro Maeda, Akihiko Matsuo, Yoshihide Mitsuda, Chieko Tokushige, Gengo Kashiwazaki, Junichi Taniguchi, Rina Maeda, Mina Noura, Masahiro Hirata, Tatsuki Kataoka, Ayaka Yano, Yoshimi Yamada, Hiroki Kiyose, Mayu Tokumasu, Hidemasa Matsuo, Sunao Tanaka, Yasushi Okuno, Manabu Muto, Kazuhito Naka, Kosei Ito, Toshio Kitamura, Yasufumi Kaneda, Paul P. Liu, Toshikazu Bando, Souichi Adachi, Hiroshi Sugiyama, Yasuhiko Kamikubo
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,196 | 233 |
172 | 52 | |
Figure | 429 | 24 |
Supplemental data | 69 | 7 |
Citation downloads | 71 | 0 |
Totals | 1,937 | 316 |
Total Views | 2,253 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.