Runt-related transcription factor 1 (RUNX1) is generally considered to function as a tumor suppressor in the development of leukemia, but a growing body of evidence suggests that it has pro-oncogenic properties in acute myeloid leukemia (AML). Here we have demonstrated that the antileukemic effect mediated by RUNX1 depletion is highly dependent on a functional p53-mediated cell death pathway. Increased expression of other RUNX family members, including RUNX2 and RUNX3, compensated for the antitumor effect elicited by RUNX1 silencing, and simultaneous attenuation of all RUNX family members as a cluster led to a much stronger antitumor effect relative to suppression of individual RUNX members. Switching off the RUNX cluster using alkylating agent–conjugated pyrrole-imidazole (PI) polyamides, which were designed to specifically bind to consensus RUNX-binding sequences, was highly effective against AML cells and against several poor-prognosis solid tumors in a xenograft mouse model of AML without notable adverse events. Taken together, these results identify a crucial role for the RUNX cluster in the maintenance and progression of cancer cells and suggest that modulation of the RUNX cluster using the PI polyamide gene-switch technology is a potential strategy to control malignancies.
Ken Morita, Kensho Suzuki, Shintaro Maeda, Akihiko Matsuo, Yoshihide Mitsuda, Chieko Tokushige, Gengo Kashiwazaki, Junichi Taniguchi, Rina Maeda, Mina Noura, Masahiro Hirata, Tatsuki Kataoka, Ayaka Yano, Yoshimi Yamada, Hiroki Kiyose, Mayu Tokumasu, Hidemasa Matsuo, Sunao Tanaka, Yasushi Okuno, Manabu Muto, Kazuhito Naka, Kosei Ito, Toshio Kitamura, Yasufumi Kaneda, Paul P. Liu, Toshikazu Bando, Souichi Adachi, Hiroshi Sugiyama, Yasuhiko Kamikubo
RUNX1 inhibition activates the p53 pathway by transcriptionally controlling BCL11A and TRIM24 expression.