Melanoma can be stratified into unique subtypes based on distinct pathologies. The acral/mucosal melanoma subtype is characterized by aberrant and constitutive activation of the proto-oncogene receptor tyrosine kinase C-KIT, which drives tumorigenesis. Treatment of these melanoma patients with C-KIT inhibitors has proven challenging, prompting us to investigate the downstream effectors of the C-KIT receptor. We determined that C-KIT stimulates MAP kinase–interacting serine/threonine kinases 1 and 2 (MNK1/2), which phosphorylate eukaryotic translation initiation factor 4E (eIF4E) and render it oncogenic. Depletion of MNK1/2 in melanoma cells with oncogenic C-KIT inhibited cell migration and mRNA translation of the transcriptional repressor SNAI1 and the cell cycle gene CCNE1. This suggested that blocking MNK1/2 activity may inhibit tumor progression, at least in part, by blocking translation initiation of mRNAs encoding cell migration proteins. Moreover, we developed an MNK1/2 inhibitor (SEL201), and found that SEL201-treated KIT-mutant melanoma cells had lower oncogenicity and reduced metastatic ability. Clinically, tumors from melanoma patients harboring KIT mutations displayed a marked increase in MNK1 and phospho-eIF4E. Thus, our studies indicate that blocking MNK1/2 exerts potent antimelanoma effects and support blocking MNK1/2 as a potential strategy to treat patients positive for KIT mutations.
Yao Zhan, Jun Guo, William Yang, Christophe Goncalves, Tomasz Rzymski, Agnieszka Dreas, Eliza Żyłkiewicz, Maciej Mikulski, Krzysztof Brzózka, Aniela Golas, Yan Kong, Meng Ma, Fan Huang, Bonnie Huor, Qianyu Guo, Sabrina Daniela da Silva, Jose Torres, Yutian Cai, Ivan Topisirovic, Jie Su, Krikor Bijian, Moulay A. Alaoui-Jamali, Sidong Huang, Fabrice Journe, Ghanem E. Ghanem, Wilson H. Miller Jr., Sonia V. del Rincón
MNK1/2 knockdown in HBL cells suppresses cell migration and the expression of cyclin E1 and SNAIL.