BACKGROUND. Cardiovascular disease occurs at lower incidence in premenopausal females compared with age-matched males. This variation may be linked to sex differences in inflammation. We prospectively investigated whether inflammation and components of the inflammatory response are altered in females compared with males. METHODS. We performed 2 clinical studies in healthy volunteers. In 12 men and 12 women, we assessed systemic inflammatory markers and vascular function using brachial artery flow-mediated dilation (FMD). In a further 8 volunteers of each sex, we assessed FMD response to glyceryl trinitrate (GTN) at baseline and at 8 hours and 32 hours after typhoid vaccine. In a separate study in 16 men and 16 women, we measured inflammatory exudate mediators and cellular recruitment in cantharidin-induced skin blisters at 24 and 72 hours. RESULTS. Typhoid vaccine induced mild systemic inflammation at 8 hours, reflected by increased white cell count in both sexes. Although neutrophil numbers at baseline and 8 hours were greater in females, the neutrophils were less activated. Systemic inflammation caused a decrease in FMD in males, but an increase in females, at 8 hours. In contrast, GTN response was not altered in either sex after vaccine. At 24 hours, cantharidin formed blisters of similar volume in both sexes; however, at 72 hours, blisters had only resolved in females. Monocyte and leukocyte counts were reduced, and the activation state of all major leukocytes was lower, in blisters of females. This was associated with enhanced levels of the resolving lipids, particularly D-resolvin. CONCLUSIONS. Our findings suggest that female sex protects against systemic inflammation-induced endothelial dysfunction. This effect is likely due to accelerated resolution of inflammation compared with males, specifically via neutrophils, mediated by an elevation of the D-resolvin pathway. TRIAL REGISTRATION. ClinicalTrials.gov NCT01582321 and NRES: City Road and Hampstead Ethics Committee: 11/LO/2038. FUNDING. The authors were funded by multiple sources, including the National Institute for Health Research, the British Heart Foundation, and the European Research Council.
Krishnaraj S. Rathod, Vikas Kapil, Shanti Velmurugan, Rayomand S. Khambata, Umme Siddique, Saima Khan, Sven Van Eijl, Lorna C. Gee, Jascharanpreet Bansal, Kavi Pitrola, Christopher Shaw, Fulvio D’Acquisto, Romain A. Colas, Federica Marelli-Berg, Jesmond Dalli, Amrita Ahluwalia
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,366 | 316 |
153 | 81 | |
Figure | 277 | 14 |
Table | 76 | 0 |
Supplemental data | 88 | 5 |
Citation downloads | 53 | 0 |
Totals | 2,013 | 416 |
Total Views | 2,429 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.