Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Targeting integrin α5β1 ameliorates severe airway hyperresponsiveness in experimental asthma
Aparna Sundaram, … , Xiaozhu Huang, Dean Sheppard
Aparna Sundaram, … , Xiaozhu Huang, Dean Sheppard
Published January 3, 2017; First published December 5, 2016
Citation Information: J Clin Invest. 2017;127(1):365-374. https://doi.org/10.1172/JCI88555.
View: Text | PDF
Categories: Research Article Muscle biology Pulmonology

Targeting integrin α5β1 ameliorates severe airway hyperresponsiveness in experimental asthma

  • Text
  • PDF
Abstract

Treatment options are limited for severe asthma, and the need for additional therapies remains great. Previously, we demonstrated that integrin αvβ6-deficient mice are protected from airway hyperresponsiveness, due in part to increased expression of the murine ortholog of human chymase. Here, we determined that chymase protects against cytokine-enhanced bronchoconstriction by cleaving fibronectin to impair tension transmission in airway smooth muscle (ASM). Additionally, we identified a pathway that can be therapeutically targeted to mitigate the effects of airway hyperresponsiveness. Administration of chymase to human bronchial rings abrogated IL-13–enhanced contraction, and this effect was not due to alterations in calcium homeostasis or myosin light chain phosphorylation. Rather, chymase cleaved fibronectin, inhibited ASM adhesion, and attenuated focal adhesion phosphorylation. Disruption of integrin ligation with an RGD-containing peptide abrogated IL-13–enhanced contraction, with no further effect from chymase. We identified α5β1 as the primary fibronectin-binding integrin in ASM, and α5β1-specific blockade inhibited focal adhesion phosphorylation and IL-13–enhanced contraction, with no additional effect from chymase. Delivery of an α5β1 inhibitor into murine airways abrogated the exaggerated bronchoconstriction induced by allergen sensitization and challenge. Finally, α5β1 blockade enhanced the effect of the bronchodilator isoproterenol on airway relaxation. Our data identify the α5β1 integrin as a potential therapeutic target to mitigate the severity of airway contraction in asthma.

Authors

Aparna Sundaram, Chun Chen, Amin Khalifeh-Soltani, Amha Atakilit, Xin Ren, Wenli Qiu, Hyunil Jo, William DeGrado, Xiaozhu Huang, Dean Sheppard

×

Figure 1

Chymase abrogates cytokine-enhanced airway contraction.

Options: View larger image (or click on image) Download as PowerPoint
Chymase abrogates cytokine-enhanced airway contraction.
(A) Force exerte...
(A) Force exerted on human bronchial rings measured after incubation for 12 hours in DMEM with IL-13 (100 ng/ml) or saline (control), then for 20 minutes with rhChy (30 nM) or vehicle, in response to a range of concentrations agonist Mch. n = 3–9 rings per group. **P < 0.01 and ***P < 0.001, for IL-13 versus IL-13/rhChy; repeated measures of variance. (B) Contractile force of mouse tracheal rings measured after incubation for 12 hours in DMEM with IL-17A (100 ng/ml) or saline (control), then for 20 minutes with rhChy (30 nM) or vehicle in response to a range of concentrations of the contractile agonist Mch. n = 4–5 rings per group. ***P < 0.001, for IL-17A versus IL-17A/rhChy; repeated measures of variance. All data represent the mean ± SEM.
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts