E2F-mediated transcriptional repression of cell cycle–dependent gene expression is critical for the control of cellular proliferation, survival, and development. E2F signaling also interacts with transcriptional programs that are downstream of genetic predictors for cancer development, including hepatocellular carcinoma (HCC). Here, we evaluated the function of the atypical repressor genes
Lindsey N. Kent, Jessica B. Rakijas, Shusil K. Pandit, Bart Westendorp, Hui-Zi Chen, Justin T. Huntington, Xing Tang, Sooin Bae, Arunima Srivastava, Shantibhusan Senapati, Christopher Koivisto, Chelsea K. Martin, Maria C. Cuitino, Miguel Perez, Julian M. Clouse, Veda Chokshi, Neelam Shinde, Raleigh Kladney, Daokun Sun, Antonio Perez-Castro, Ramadhan B. Matondo, Sathidpak Nantasanti, Michal Mokry, Kun Huang, Raghu Machiraju, Soledad Fernandez, Thomas J. Rosol, Vincenzo Coppola, Kamal S. Pohar, James M. Pipas, Carl R. Schmidt, Alain de Bruin, Gustavo Leone
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 804 | 110 |
148 | 42 | |
Figure | 550 | 14 |
Table | 212 | 0 |
Supplemental data | 57 | 4 |
Citation downloads | 83 | 0 |
Totals | 1,854 | 170 |
Total Views | 2,024 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.