The restriction of viral receptors and coreceptors to the basolateral surface of airway epithelial cells has been blamed for the inefficient transfer of viral vectors to the apical surface of this tissue. We now report, however, that differentiated human airway epithelia internalize rAAV type-2 virus efficiently from their apical surfaces, despite the absence of known adeno-associated virus–2 (AAV-2) receptors or coreceptors at these sites. The dramatically lower transduction efficiency of rAAV infection from the apical surface of airway cells appears to result instead from differences in endosomal processing and nuclear trafficking of apically or basolaterally internalized virions. AAV capsid proteins are ubiquitinated after endocytosis, and gene transfer can be significantly enhanced by proteasome or ubiquitin ligase inhibitors. Tripeptide proteasome inhibitors increased persistent rAAV gene delivery from the apical surface >200-fold, to a level nearly equivalent to that achieved with basolateral infection. In vivo application of proteasome inhibitor in mouse lung augmented rAAV gene transfer from undetectable levels to a mean of 10.4 ± 1.6% of the epithelial cells in large bronchioles. Proteasome inhibitors also increased rAAV-2–mediated gene transfer to the liver tenfold, but they did not affect transduction of skeletal or cardiac muscle. These findings suggest that tissue-specific ubiquitination of viral capsid proteins interferes with rAAV-2 transduction and provides new approaches to circumvent this barrier for gene therapy of diseases such as cystic fibrosis.
Dongsheng Duan, Yongping Yue, Ziying Yan, Jusan Yang, John F. Engelhardt
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 616 | 88 |
79 | 38 | |
Figure | 452 | 32 |
Citation downloads | 69 | 0 |
Totals | 1,216 | 158 |
Total Views | 1,374 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.