Abstract
While current HIV-1 therapies have greatly improved the quality and duration of life for infected individuals, a vaccine to prevent transmission of the virus is lacking. Broadly neutralizing monoclonal antibodies (bnmAbs) with the capacity to neutralize multiple HIV-1 variants have been isolated from HIV-1–infected individuals, and there has been a great effort to investigate how these bnmAbs arise, due their potential for HIV-1 vaccination. In this issue of the JCI, Willis and colleagues apply a computational approach to design variants of the bnmAb PG9 in an attempt to enhance potency and neutralization breadth. One of these variants was able to target multiple PG9-resistant strains, as the result of stabilization of the long heavy chain complementarity determining region 3 (HCDR3). The results of this study provide important insight and a unique approach to optimizing HIV-1 bnmABs.
Authors
×
Download this citation for these citation managers:
Or, download this citation in these formats:
If you experience problems using these citation formats, send us feedback.