Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Serine 421 regulates mutant huntingtin toxicity and clearance in mice
Ian H. Kratter, … , Eliezer Masliah, Steven Finkbeiner
Ian H. Kratter, … , Eliezer Masliah, Steven Finkbeiner
Published August 15, 2016
Citation Information: J Clin Invest. 2016;126(9):3585-3597. https://doi.org/10.1172/JCI80339.
View: Text | PDF
Research Article Neuroscience Article has an altmetric score of 95

Serine 421 regulates mutant huntingtin toxicity and clearance in mice

  • Text
  • PDF
Abstract

Huntington’s disease (HD) is a progressive, adult-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the N-terminal region of the protein huntingtin (HTT). There are no cures or disease-modifying therapies for HD. HTT has a highly conserved Akt phosphorylation site at serine 421, and prior work in HD models found that phosphorylation at S421 (S421-P) diminishes the toxicity of mutant HTT (mHTT) fragments in neuronal cultures. However, whether S421-P affects the toxicity of mHTT in vivo remains unknown. In this work, we used murine models to investigate the role of S421-P in HTT-induced neurodegeneration. Specifically, we mutated the human mHTT gene within a BAC to express either an aspartic acid or an alanine at position 421, mimicking tonic phosphorylation (mHTT-S421D mice) or preventing phosphorylation (mHTT-S421A mice), respectively. Mimicking HTT phosphorylation strongly ameliorated mHTT-induced behavioral dysfunction and striatal neurodegeneration, whereas neuronal dysfunction persisted when S421 phosphorylation was blocked. We found that S421 phosphorylation mitigates neurodegeneration by increasing proteasome-dependent turnover of mHTT and reducing the presence of a toxic mHTT conformer. These data indicate that S421 is a potent modifier of mHTT toxicity and offer in vivo validation for S421 as a therapeutic target in HD.

Authors

Ian H. Kratter, Hengameh Zahed, Alice Lau, Andrey S. Tsvetkov, Aaron C. Daub, Kurt F. Weiberth, Xiaofeng Gu, Frédéric Saudou, Sandrine Humbert, X. William Yang, Alex Osmand, Joan S. Steffan, Eliezer Masliah, Steven Finkbeiner

×

Figure 6

Phosphomimetic mutation at S421 increases the turnover of an N-terminal fragment of HTT in striatal cells via the proteasome.

Options: View larger image (or click on image) Download as PowerPoint
Phosphomimetic mutation at S421 increases the turnover of an N-terminal ...
(A) Representative Western blot of St14A cell lysates generated 48 hours after transfection with HTT-N480-17Q (probed with mAb 5492) and myc-actin. (B) Quantification of the effect of S421 mutation on HTT-N480 levels in St14A cell lysate. (C) Quantification of the fold change in levels of HTT-N480 with and without S421 mutation after treatment with the specific proteasome inhibitor epoxomicin or lysosome inhibitors ammonium chloride and leupeptin. Values in B and C are based on the mean of 3 independent experiments after normalization for transfection efficiency and loading with the myc-actin control. (D) Representative Western blot after coimmunoprecipitation of HTT-N480-17Q with anti-HA rabbit polyclonal or IgG control from St14A cell lysates after transfection of HTT-N480-17Q, myc-actin, and HA-ubiquitin and treatment with epoxomicin and PR619 (an inhibitor of deubiquitinases) to enhance accumulation of ubiquitin. One-twentieth whole-cell lysates (WCL) were run as controls on the same gel. (E) Quantification of the effect of S421 mutation on HTT-N480 coimmunoprecipitation by HA-ubiquitin in St14A cell lysate. Values are expressed as a normalized ratio of immunoprecipitated to whole-cell control levels per construct. Final data represent 2 independent experiments each run in triplicate. Statistical analysis in each case was by 1-way ANOVA with Bonferroni post hoc tests for all pairwise comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 12 news outlets
Posted by 13 X users
On 4 Facebook pages
63 readers on Mendeley
See more details