Abstract

Drug-eluting stents have emerged as potent weapons in the treatment of patients with symptomatic coronary artery disease by reducing restenosis rates; however, a significant clinical consequence of these stents is delayed reendothelialization, which may increase the risk of late stent thrombosis. In this issue of the JCI, Santulli and colleagues generated an adenovirus that expresses the cyclin-dependent kinase inhibitor p27Kip1 (p27) and bears four tandem copies of target sequences for the endothelial cell–enriched microRNA (miRNA) miR-126-3p (Ad-p27-126TS) in an attempt to specifically reduce proliferation of vascular smooth muscle cells, but not endothelial cells. Indeed, delivery of Ad-p27-126TS to balloon-injured arteries in rats not only induced faster and more complete reendothelialization, but also effectively improved neointimal hyperplasia, hypercoagulability, and vasoreactivity. Collectively, these findings provide a cogent foundation for the potential therapeutic use of miRNA-facilitated gene delivery strategies to heal vessel wall injury.

Authors

Mark W. Feinberg

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement