Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type–specific deletion of the genes encoding
Isabelle Brunet, Emma Gordon, Jinah Han, Brunella Cristofaro, Dong Broqueres-You, Chun Liu, Karine Bouvrée, Jiasheng Zhang, Raquel del Toro, Thomas Mathivet, Bruno Larrivée, Julia Jagu, Laurence Pibouin-Fragner, Luc Pardanaud, Maria J.C. Machado, Timothy E. Kennedy, Zhen Zhuang, Michael Simons, Bernard I. Levy, Marc Tessier-Lavigne, Almut Grenz, Holger Eltzschig, Anne Eichmann
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 898 | 102 |
108 | 32 | |
Figure | 423 | 15 |
Supplemental data | 48 | 0 |
Citation downloads | 94 | 0 |
Totals | 1,571 | 149 |
Total Views | 1,720 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.