Tissue inflammation in several autoimmune diseases, including SLE and MS, has been linked to an imbalance of IL-17–producing Th (Th17) cells and Tregs; however, the factors that promote Th17-driven autoimmunity are unclear. Here, we present evidence that the calcium/calmodulin-dependent protein kinase IV (CaMK4) is increased and required during Th17 cell differentiation. Isolation of naive T cells from a murine model of lupus revealed increased levels of CaMK4 following stimulation with Th17-inducing cytokines but not following Treg, Th1, or Th2 induction. Furthermore, naive T cells from mice lacking CaMK4 did not produce IL-17. Genetic or pharmacologic inhibition of CaMK4 decreased the frequency of IL-17–producing T cells and ameliorated EAE and lupus-like disease in murine models. Inhibition of CaMK4 reduced
Tomohiro Koga, Christian M. Hedrich, Masayuki Mizui, Nobuya Yoshida, Kotaro Otomo, Linda A. Lieberman, Thomas Rauen, José C. Crispín, George C. Tsokos
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 858 | 261 |
150 | 79 | |
Figure | 473 | 19 |
Supplemental data | 47 | 5 |
Citation downloads | 66 | 0 |
Totals | 1,594 | 364 |
Total Views | 1,958 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.