Epithelial tumor cells that have undergone epithelial-to-mesenchymal transition (EMT) are typically prone to metastasis and drug resistance and contribute to a poor clinical outcome. The transcription factor ZEB1 is a known driver of EMT, and mediators of ZEB1 represent potential therapeutic targets for metastasis suppression. Here, we have shown that phosphatidylinositol 3-kinase–targeted (PI3K-targeted) therapy suppresses metastasis in a mouse model of
Yanan Yang, Young-Ho Ahn, Yulong Chen, Xiaochao Tan, Lixia Guo, Don L. Gibbons, Christin Ungewiss, David H. Peng, Xin Liu, Steven H. Lin, Nishan Thilaganathan, Ignacio I. Wistuba, Jaime Rodriguez-Canales, Georgia McLendon, Chad J. Creighton, Jonathan M. Kurie
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 476 | 69 |
74 | 48 | |
Figure | 244 | 26 |
Table | 96 | 0 |
Supplemental data | 27 | 4 |
Citation downloads | 42 | 0 |
Totals | 959 | 147 |
Total Views | 1,106 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.