Recently, we isolated a trypsin-sensitive cholecystokinin-releasing peptide (CCK-RP) from porcine and rat intestinal mucosa. The amino acid sequence of this peptide was determined to be identical to that of the diazepam-binding inhibitor (DBI). To test the role of DBI in pancreatic secretion and responses to feeding, we used pancreaticobiliary and intestinal cannula to divert bile–pancreatic juice from anesthetized rats. Within 2 hours, this treatment caused a 2-fold increase in pancreatic protein output and a >10-fold increase in plasma CCK. Luminal DBI levels increased 4-fold. At 5 hours after diversion of bile–pancreatic juice, each of these measures returned to basal levels. Intraduodenal infusion of peptone evoked a 5-fold increase in the concentration of luminal DBI. In separate studies, we demonstrated that intraduodenal administration of antiserum to a DBI peptide specifically abolished pancreatic secretion and the increase in plasma CCK levels after diversion of bile–pancreatic juice. To demonstrate that DBI mediates the postprandial rise in plasma CCK levels, we showed that intraduodenal administration of 5% peptone induced dramatic increases in pancreatic secretion and plasma CCK, effects that could be blocked by intraduodenal administration of anti-DBI antiserum. Hence, DBI, a trypsin-sensitive CCK-RP secreted from the proximal small bowel, mediates the feedback regulation of pancreatic secretion and the postprandial release of CCK.
Ying Li, Yibai Hao, Chung Owyang