The autosomal recessive neurodegenerative disease spinal muscular atrophy (SMA) results from low levels of survival motor neuron (SMN) protein; however, it is unclear how reduced SMN promotes SMA development. Here, we determined that ubiquitin-dependent pathways regulate neuromuscular pathology in SMA. Using mouse models of SMA, we observed widespread perturbations in ubiquitin homeostasis, including reduced levels of ubiquitin-like modifier activating enzyme 1 (UBA1). SMN physically interacted with UBA1 in neurons, and disruption of
Thomas M. Wishart, Chantal A. Mutsaers, Markus Riessland, Michell M. Reimer, Gillian Hunter, Marie L. Hannam, Samantha L. Eaton, Heidi R. Fuller, Sarah L. Roche, Eilidh Somers, Robert Morse, Philip J. Young, Douglas J. Lamont, Matthias Hammerschmidt, Anagha Joshi, Peter Hohenstein, Glenn E. Morris, Simon H. Parson, Paul A. Skehel, Thomas Becker, Iain M. Robinson, Catherina G. Becker, Brunhilde Wirth, Thomas H. Gillingwater
Clustering analysis of proteomics data revealing functional pathways modified in P1 SMA mouse synapses