Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the
Jason Boyang Wu, Chen Shao, Xiangyan Li, Qinlong Li, Peizhen Hu, Changhong Shi, Yang Li, Yi-Ting Chen, Fei Yin, Chun-Peng Liao, Bangyan L. Stiles, Haiyen E. Zhau, Jean C. Shih, Leland W.K. Chung
MAOA regulates HIF1α stability.