The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis.
Fleur Lien, Alexandre Berthier, Emmanuel Bouchaert, Céline Gheeraert, Jeremy Alexandre, Geoffrey Porez, Janne Prawitt, Hélène Dehondt, Maheul Ploton, Sophie Colin, Anthony Lucas, Alexandre Patrice, François Pattou, Hélène Diemer, Alain Van Dorsselaer, Christophe Rachez, Jelena Kamilic, Albert K. Groen, Bart Staels, Philippe Lefebvre
AMPK blocks FXR transcriptional activity through inhibition of coactivator loading.