Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 106 nucleotides (range, 0–0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including
Michaela S. Banck, Rahul Kanwar, Amit A. Kulkarni, Ganesh K. Boora, Franziska Metge, Benjamin R. Kipp, Lizhi Zhang, Erik C. Thorland, Kay T. Minn, Ramesh Tentu, Bruce W. Eckloff, Eric D. Wieben, Yanhong Wu, Julie M. Cunningham, David M. Nagorney, Judith A. Gilbert, Matthew M. Ames, Andreas S. Beutler
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 860 | 185 |
143 | 60 | |
Figure | 268 | 22 |
Table | 50 | 0 |
Supplemental data | 57 | 5 |
Citation downloads | 63 | 0 |
Totals | 1,441 | 272 |
Total Views | 1,713 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.