The explosive growth in our understanding of the molecular underpinnings of glioblastomas has served as an instructive paradigm for other cancers. However, the exact nature by which many of the pathogenic drivers connect is less well known, and elucidation of relationships between critical genetic and signaling alterations may inform the development of therapeutic approaches to the disease. In this issue, Song et al. identify miR-182 induction as a mechanism by which TGF-β stimulation aberrantly activates NF-κB signaling in glioblastoma cells, clarifying a critical point of cross-talk between molecular signaling pathways. Their findings provide a greater understanding of the complex interplay between signaling pathways in cancer that may ultimately prove useful in the development of synergistic targeting approaches.
Christine E. Eyler, Jeremy N. Rich
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 196 | 15 |
57 | 21 | |
Figure | 43 | 2 |
Citation downloads | 44 | 0 |
Totals | 340 | 38 |
Total Views | 378 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.