Uremia is a complex metabolic state marked by derangement of many signaling molecules and metabolic intermediates; of these, the massively increased levels of FGF23 are among the most striking. It has remained unclear whether FGF23 is directly implicated in the pathogenesis of chronic kidney disease (CKD) and its complications, a consequence of other dysregulated pathways, or perhaps an adaptive — and thus desirable — response. In this issue of the JCI, Shalhoub et al. describe the chronic effects of antibody-mediated FGF23 neutralization in a CKD mouse model, shedding new light on this complicated story and moving us one step closer to understanding the role of FGF23 in CKD.
Orson W. Moe
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 205 | 20 |
57 | 20 | |
Citation downloads | 43 | 0 |
Totals | 305 | 40 |
Total Views | 345 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.