Hyperprolactinemia is the most common cause of hypogonadotropic anovulation and is one of the leading causes of infertility in women aged 25–34. Hyperprolactinemia has been proposed to block ovulation through inhibition of GnRH release. Kisspeptin neurons, which express prolactin receptors, were recently identified as major regulators of GnRH neurons. To mimic the human pathology of anovulation, we continuously infused female mice with prolactin. Our studies demonstrated that hyperprolactinemia in mice induced anovulation, reduced GnRH and gonadotropin secretion, and diminished kisspeptin expression. Kisspeptin administration restored gonadotropin secretion and ovarian cyclicity, suggesting that kisspeptin neurons play a major role in hyperprolactinemic anovulation. Our studies indicate that administration of kisspeptin may serve as an alternative therapeutic approach to restore the fertility of hyperprolactinemic women who are resistant or intolerant to dopamine agonists.
Charlotte Sonigo, Justine Bouilly, Nadège Carré, Virginie Tolle, Alain Caraty, Javier Tello, Fabian-Jesus Simony-Conesa, Robert Millar, Jacques Young, Nadine Binart
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 596 | 147 |
125 | 78 | |
Figure | 124 | 6 |
Supplemental data | 44 | 3 |
Citation downloads | 77 | 0 |
Totals | 966 | 234 |
Total Views | 1,200 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.