Clearance of invading pathogens is essential to preventing overwhelming inflammation and sepsis that are symptomatic of bacterial peritonitis. Macrophages participate in this innate immune response by engulfing and digesting pathogens, a process called phagocytosis. Oxidized phospholipids (OxPL) are danger-associated molecular patterns (DAMPs) generated in response to infection that can prevent the phagocytic clearance of bacteria. We investigated the mechanism underlying OxPL action in macrophages. Exposure to OxPL induced alterations in actin polymerization, resulting in spreading of peritoneal macrophages and diminished uptake of
Ulrich Matt, Omar Sharif, Rui Martins, Tanja Furtner, Lorene Langeberg, Riem Gawish, Immanuel Elbau, Ana Zivkovic, Karin Lakovits, Olga Oskolkova, Bianca Doninger, Andreas Vychytil, Thomas Perkmann, Gernot Schabbauer, Christoph J. Binder, Valery N. Bochkov, John D. Scott, Sylvia Knapp
OxPL-induced inhibition of phagocytosis requires anchoring of PKA in vivo and in vitro.