Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations
Akshay K. Vaishnaw, … , Moses V. Chao, Keith B. Elkon
Akshay K. Vaishnaw, … , Moses V. Chao, Keith B. Elkon
Published February 1, 1999
Citation Information: J Clin Invest. 1999;103(3):355-363. https://doi.org/10.1172/JCI5121.
View: Text | PDF | Corrigendum
Article Article has an altmetric score of 3

The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations

  • Text
  • PDF
Abstract

Heterozygous mutations of the receptor CD95 (Fas/Apo-1) are associated with defective lymphocyte apoptosis and a clinical disease characterized by lymphadenopathy, splenomegaly, and systemic autoimmunity. From our cohort of 11 families, we studied eight patients to define the mechanisms responsible for defective CD95-mediated apoptosis. Mutations in and around the death domain of CD95 had a dominant–negative effect that was explained by interference with the recruitment of the signal adapter protein, FADD, to the death domain. The intracellular domain (ICD) mutations were associated with a highly penetrant Canale-Smith syndrome (CSS) phenotype and an autosomal dominant inheritance pattern. In contrast, mutations affecting the CD95 extracellular domain (ECD) resulted in failure of extracellular expression of the mutant protein or impaired binding to CD95 ligand. They did not have a dominant–negative effect. In each of the families with an ECD mutation, only a single individual was affected. These observations were consistent with differing mechanisms of action and modes of inheritance of ICD and ECD mutations, suggesting that individuals with an ECD mutation may require additional defect(s) for expression of CSS.

Authors

Akshay K. Vaishnaw, Jason R. Orlinick, Jia-Li Chu, Peter H. Krammer, Moses V. Chao, Keith B. Elkon

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Surface expression and dominant–negative function of ICD mutant CD95 all...
Surface expression and dominant–negative function of ICD mutant CD95 alleles. (a) Expression. Human embryonic kidney 293T cells were transfected with pCDNA3 expression vectors encoding WT or mutant CD95. CD95 expression was analyzed by flow cytometry using the anti-CD95 MAB, UB2. The percent of CD95-positive cells for each transfection is shown. (b) Function. CD95-positive Jurkat T cells were cotransfected with the same panel of expression vectors as in a and with the reporter gene, RSV-Luc. The cells were separated into two aliquots and cultured with either the agonistic anti–CD95 antibody CH11 (50 ng/ml) or an isotype control antibody 24 h after transfection. Luciferase expression was assayed at 48 h and percent viability was calculated by the following formula: (luciferase activity of CH11/luciferase activity of control antibody) × 100. The data shown are the mean results of two independent experiments. WT, wild type; RSV, Rous sarcoma virus.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 24 patents
20 readers on Mendeley
See more details