DNA damage checkpoints in the cell cycle may be important barriers against cancer progression in human cells. Fanconi anemia (FA) is an inherited DNA instability disorder that is associated with bone marrow failure and a strong predisposition to cancer. Although FA cells experience constitutive chromosomal breaks, cell cycle arrest at the G2 DNA damage checkpoint, and an excess of cell death, some patients do become clinically stable, and the mechanisms underlying this, other than spontaneous reversion of the disease-causing mutation, are not well understood. Here we have defined a clonal phenotype, termed attenuation, in which FA patients acquire an abrogation of the G2 checkpoint arrest. Attenuated cells expressed lower levels of CHK1 (also known as CHEK1) and p53. The attenuation could be recapitulated by modulating the ATR/CHK1 pathway, and CHK1 inhibition protected FA cells from cell death. FA patients who expressed the attenuated phenotype had mild bone marrow deficiency and reached adulthood, but several of them eventually developed myelodysplasia or leukemia. Better understanding of attenuation might help predict a patient’s clinical course and guide choice of treatment. Our results also highlight the importance of evaluating the cellular DNA damage checkpoint and repair pathways in cancer therapies in general.
Raphael Ceccaldi, Delphine Briot, Jérôme Larghero, Nadia Vasquez, Catherine Dubois d’Enghien, Delphine Chamousset, Maria-Elena Noguera, Quinten Waisfisz, Olivier Hermine, Corinne Pondarre, Thierry Leblanc, Eliane Gluckman, Hans Joenje, Dominique Stoppa-Lyonnet, Gérard Socié, Jean Soulier
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 461 | 33 |
78 | 26 | |
Figure | 277 | 15 |
Supplemental data | 43 | 0 |
Citation downloads | 58 | 0 |
Totals | 917 | 74 |
Total Views | 991 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.