Insulin resistance results in dysregulated hepatic gluconeogenesis that contributes to obesity-related hyperglycemia and progression of type 2 diabetes mellitus (T2DM). Recent studies show that MAPK phosphatase–3 (MKP-3) promotes gluconeogenic gene transcription in hepatoma cells, but little is known about the physiological role of MKP-3 in vivo. Here, we have shown that expression of MKP-3 is markedly increased in the liver of diet-induced obese mice. Consistent with this, adenovirus-mediated MKP-3 overexpression in lean mice promoted gluconeogenesis and increased fasting blood glucose levels. Conversely, shRNA knockdown of MKP-3 in both lean and obese mice resulted in decreased fasting blood glucose levels. In vitro experiments identified forkhead box O1 (FOXO1) as a substrate for MKP-3. MKP-3–mediated dephosphorylation of FOXO1 at Ser256 promoted its nuclear translocation and subsequent recruitment to the promoters of key gluconeogenic genes. In addition, we showed that PPARγ coactivator–1α (PGC-1α) acted downstream of FOXO1 to mediate MKP-3–induced gluconeogenesis. These data indicate that MKP-3 is an important regulator of hepatic gluconeogenesis in vivo and suggest that inhibition of MKP-3 activity may provide new therapies for T2DM.
Zhidan Wu, Ping Jiao, Xueming Huang, Bin Feng, Yajun Feng, Shengyong Yang, Phillip Hwang, Jing Du, Yaohui Nie, Guozhi Xiao, Haiyan Xu
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 526 | 71 |
86 | 36 | |
Figure | 349 | 17 |
Supplemental data | 37 | 2 |
Citation downloads | 75 | 0 |
Totals | 1,073 | 126 |
Total Views | 1,199 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.