Deregulated production of IL-17 and IL-21 plays a key pathogenic role in many autoimmune disorders. A delineation of the mechanisms that underlie the inappropriate synthesis of IL-17 and IL-21 in autoimmune diseases can thus provide important insights into potential therapies for these disorders. Here we have shown that the serine-threonine kinase Rho-associated, coiled-coil–containing protein kinase 2 (ROCK2) becomes activated in mouse T cells under Th17 skewing conditions and phosphorylates interferon regulatory factor 4 (IRF4), a transcription factor that is absolutely required for the production of IL-17 and IL-21. We furthermore demonstrated that ROCK2-mediated phosphorylation of IRF4 regulated the synthesis of IL-17 and IL-21 and the differentiation of Th17 cells. Whereas CD4+ T cells from WT mice activated ROCK2 physiologically under Th17 conditions, CD4+ T cells from 2 different mouse models of spontaneous autoimmunity aberrantly activated ROCK2 under neutral conditions. Moreover, administration of ROCK inhibitors ameliorated the deregulated production of IL-17 and IL-21 and the inflammatory and autoantibody responses observed in these autoimmune mice. Our findings thus uncover a crucial link among ROCK2, IRF4, and the production of IL-17 and IL-21 and support the idea that selective inhibition of ROCK2 could represent an important therapeutic regimen for the treatment of autoimmune disorders.
Partha S. Biswas, Sanjay Gupta, Emily Chang, Li Song, Roslynn A. Stirzaker, James K. Liao, Govind Bhagat, Alessandra B. Pernis
ROCK inhibition decreases IL-17 and IL-21 production in vivo and ameliorates arthritis development in