Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin lymphomas that affect the skin. The pathogenesis of these conditions is poorly understood. For example, the signaling mechanisms contributing to the dysregulated growth of the neoplastic T cells are not well defined. Here, we demonstrate that loss of nuclear localization of pro–IL-16 facilitates CTCL cell proliferation by causing a decrease in expression of the cyclin dependent–kinase inhibitor p27Kip1. The decrease in p27Kip1 expression was directly attributable to an increase in expression of S-phase kinase-associated protein 2 (Skp2). Regulation of Skp2 is in part attributed to the nuclear presence of the scaffold protein pro–IL-16. T cells isolated from 11 patients with advanced CTCL, but not those from healthy controls or patients with T cell acute lymphocytic leukemia (T-ALL), demonstrated reduction in nuclear pro–IL-16 levels. Sequence analysis identified the presence of mutations in the 5ι end of the PDZ1 region of pro–IL-16, a domain required for association of pro–IL-16 with the nuclear chaperone HSC70 (also known as HSPA8). HSC70 knockdown led to loss of nuclear translocation by pro–IL-16 and subsequent increases in Skp2 levels and decreases in p27Kip1 levels, which ultimately enhanced T cell proliferation. Thus, our data indicate that advanced CTCL cell growth is facilitated, at least in part, by mutations in the scaffold protein pro–IL-16, which directly regulates Skp2 synthesis.
Clara Curiel-Lewandrowski, Hisato Yamasaki, Chuan Ping Si, Xiaoyi Jin, Yujun Zhang, Jillian Richmond, Marina Tuzova, Kevin Wilson, Beth Sullivan, David Jones, Nataliya Ryzhenko, Frederick Little, Thomas S. Kupper, David M. Center, William W. Cruikshank
Detection of Skp2, p27Kip1, and p21Cip1 in primary CD4+ T cells from individuals with advanced CTCL and T-ALL and normal individuals.