Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice
Evan Nair-Gill, … , Caius G. Radu, Owen N. Witte
Evan Nair-Gill, … , Caius G. Radu, Owen N. Witte
Published May 17, 2010
Citation Information: J Clin Invest. 2010;120(6):2005-2015. https://doi.org/10.1172/JCI41250.
View: Text | PDF | Corrigendum
Research Article Immunology Article has an altmetric score of 4

PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice

  • Text
  • PDF
Abstract

Clinical tools that measure changes in immune cell metabolism would improve the diagnosis and treatment of immune dysfunction. PET, utilizing probes for specific metabolic processes, detects regions of immune activation in vivo. In this study we investigated the immune cell specificity of PET probes for two different metabolic pathways: [18F]–2-fluorodeoxyglucose ([18F]-FDG) for glycolysis and [18F]–2-fluoro-d-(arabinofuranosyl)cytosine ([18F]-FAC) for deoxycytidine salvage. We isolated innate and adaptive immune cells from tissues of mice challenged with a retrovirus-induced sarcoma and measured their ability to accumulate FDG and FAC. We determined that the two probes had distinct patterns of accumulation: FDG accumulated to the highest levels in innate immune cells, while FAC accumulated predominantly in CD8+ T cells in a manner that correlated with cellular proliferation. This study demonstrates that innate and adaptive cell types differ in glycolytic and deoxycytidine salvage demands during an immune response and that these differential metabolic requirements can be detected with specific PET probes. Our findings have implications for the interpretation of clinical PET scans that use [18F]-FDG or [18F]-FAC to assess immune function in vivo and suggest potential applications of metabolic PET to monitor the effects of targeted immune modulation.

Authors

Evan Nair-Gill, Stephanie M. Wiltzius, Xiao X. Wei, Donghui Cheng, Mireille Riedinger, Caius G. Radu, Owen N. Witte

×

Figure 3

Cell-intrinsic [3H]-2DG accumulation is highest in innate immune cells, while [3H]-FAC accumulates predominantly in adaptive immune cells.

Options: View larger image (or click on image) Download as PowerPoint
Cell-intrinsic [3H]-2DG accumulation is highest in innate immune cells, ...
(A) Single-cell suspensions of spleen, DLN, and tumor from MSV/MuLV-infected mice were analyzed for CD4, CD8, B220, and CD11b by flow cytometry. Populations that were collected for probe accumulation analysis are boxed in red. Values in the quadrants represent the percentage of major immune lineages isolated from each tissue. (B) The total number of each cell type recovered from the spleen, DLN, and tumor are shown (n = 6 mice). (C and D) Cells (105) from the sorted populations were pulse labeled with [3H]-2DG (C) or [3H]-FAC (D) and compared with naive lymphocytes (***P < 0.0001, *P < 0.05, n = 3 experiments). Sorted cells were fixed and stained with propidium iodide. The percentage in S-G2-M was plotted against the accumulation of [3H]-2DG and [3H]-FAC. Data from 3 experiments are shown. Open, filled, and half-filled symbols represent 3 experiments. Shapes were assigned according to cell type: squares, B cells; triangles, CD4+ T cells; circles, CD8+ T cells; diamonds, CD11bhi myeloid cells. Colors were assigned based on the tissues from which a cell population was isolated: blue, spleen; green, DLN; red, tumor; gray, naive lymph nodes. A positive correlation between [3H]-FAC accumulation and percent in S-G2-M was observed (r2 = 0.68, P < 0.0001).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 5 patents
Highlighted by 1 platforms
58 readers on Mendeley
See more details