The mechanisms underlying mucus-associated pathologies in cystic fibrosis (CF) remain obscure. However, recent studies indicate that CF transmembrane conductance regulator (CFTR) is required for bicarbonate (HCO3–) transport and that HCO3– is critical for normal mucus formation. We therefore investigated the role of HCO3– in mucus secretion using mouse small intestine segments ex vivo. Basal rates of mucus release in the presence or absence of HCO3– were similar. However, in the absence of HCO3–, mucus release stimulated by either PGE2 or 5-hydroxytryptamine (5-HT) was approximately half that stimulated by these molecules in the presence of HCO3–. Inhibition of HCO3– and fluid transport markedly reduced stimulated mucus release. However, neither absence of HCO3– nor inhibition of HCO3– transport affected fluid secretion rates, indicating that the effect of HCO3– removal on mucus release was not due to decreased fluid secretion. In a mouse model of CF (mice homozygous for the most common human CFTR mutation), intestinal mucus release was minimal when stimulated with either PGE2 or 5-HT in the presence or absence of HCO3–. These data suggest that normal mucus release requires concurrent HCO3– secretion and that the characteristically aggregated mucus observed in mucin-secreting organs in individuals with CF may be a consequence of defective HCO3– transport.
Mary Abigail S. Garcia, Ning Yang, Paul M. Quinton
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,042 | 123 |
206 | 53 | |
Figure | 531 | 29 |
Citation downloads | 57 | 0 |
Totals | 1,836 | 205 |
Total Views | 2,041 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.