Microbial colonization of mucosal surfaces may be an initial event in the progression to disease, and it is often a transient process. For the extracellular pathogen Streptococcus pneumoniae studied in a mouse model, nasopharyngeal carriage is eliminated over a period of weeks and requires cellular rather than humoral immunity. Here, we demonstrate that primary infection led to TLR2-dependent recruitment of monocyte/macrophages into the upper airway lumen, where they engulfed pneumococci. Pharmacologic depletion of luminal monocyte/macrophages by intranasal instillation of liposomal clodronate diminished pneumococcal clearance. Efficient clearance of colonization required TLR2 signaling to generate a population of pneumococcal-specific IL-17–expressing CD4+ T cells. Depletion of either IL-17A or CD4+ T cells was sufficient to block the recruitment of monocyte/macrophages that allowed for effective late pneumococcal clearance. In contrast with naive mice, previously colonized mice showed enhanced early clearance that correlated with a more robust influx of luminal neutrophils. As for primary colonization, these cellular responses required Th17 immunity. Our findings demonstrate that monocyte/macrophages and neutrophils recruited to the mucosal surface are key effectors in clearing primary and secondary bacterial colonization, respectively.
Zhe Zhang, Thomas B. Clarke, Jeffrey N. Weiser
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,311 | 152 |
87 | 45 | |
Figure | 284 | 12 |
Citation downloads | 69 | 0 |
Totals | 2,751 | 209 |
Total Views | 2,960 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.