HIV infiltrates the CNS soon after an individual has become infected with the virus, and can cause dementia and encephalitis in late-stage disease. Here, a global metabolomics approach was used to find and identify metabolites differentially regulated in the cerebrospinal fluid (CSF) of rhesus macaques with SIV-induced CNS disease, as we hypothesized that this might provide biomarkers of virus-induced CNS damage. The screening platform used a non-targeted, mass-based metabolomics approach beginning with capillary reverse phase chromatography and electrospray ionization with accurate mass determination, followed by novel, nonlinear data alignment and online database screening to identify metabolites. CSF was compared before and after viral infection. Significant changes in the metabolome specific to SIV-induced encephalitis were observed. Metabolites that were increased during infection-induced encephalitis included carnitine, acyl-carnitines, fatty acids, and phospholipid molecules. The elevation in free fatty acids and lysophospholipids correlated with increased expression of specific phospholipases in the brains of animals with encephalitis. One of these, a phospholipase A2 isoenzyme, is capable of releasing a number of the fatty acids identified. It was expressed in different areas of the brain in conjunction with glial activation, rather than linked to regions of SIV infection and inflammation, indicating widespread alterations in infected brains. The identification of specific metabolites as well as mechanisms of their increase illustrates the potential of mass-based metabolomics to address problems in CNS biochemistry and neurovirology, as well as neurodegenerative diseases.
William R. Wikoff, Gurudutt Pendyala, Gary Siuzdak, Howard S. Fox
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,394 | 68 |
81 | 35 | |
Figure | 195 | 13 |
Table | 103 | 0 |
Supplemental data | 27 | 2 |
Citation downloads | 54 | 0 |
Totals | 1,854 | 118 |
Total Views | 1,972 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.