Repeated use of opiate analgesic drugs such as morphine for the relief of chronic pain may result in the development of opiate tolerance and dependence, leading to a narrowing of the drug’s therapeutic index and increased side effects. Previous preclinical work has shown that interruption of a signaling cascade involving the N-methyl-D-aspartate receptor and NO prevents morphine tolerance. In this issue of the JCI, Muscoli and colleagues extend our understanding of the role of NO in tolerance by demonstrating that, in mice, tolerance to chronic morphine administration is associated with NO conversion to peroxynitrite, which accumulates and nitrates tyrosine moieties within various proteins in the spinal cord (see the related article beginning on page 3530). This and other data suggest that peroxynitrite plays a role in opiate tolerance and that regulation of peroxynitrite may be utilized for the management of opiate-induced tolerance.
Gavril W. Pasternak
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 242 | 241 |
120 | 18 | |
Figure | 129 | 5 |
Supplemental data | 69 | 0 |
Citation downloads | 50 | 0 |
Totals | 610 | 264 |
Total Views | 874 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.