TGF-β and its signaling mediators, Smad2, -3, and -4, are involved with tumor suppression and promotion functions. Smad4–/– mouse epidermis develops spontaneous skin squamous cell carcinomas (SCCs), and Smad3–/– mice are resistant to carcinogen-induced skin cancer; however, the role of Smad2 in skin carcinogenesis has not been explored. In the present study, we found that Smad2 and Smad4, but not Smad3, were frequently lost in human SCCs. Mice with keratinocyte-specific Smad2 deletion exhibited accelerated formation and malignant progression of chemically induced skin tumors compared with WT mice. Consistent with the loss of Smad2 in poorly differentiated human SCCs, Smad2–/– tumors were poorly differentiated and underwent epithelial-mesenchymal transition (EMT) prior to spontaneous Smad4 loss. Reduced E-cadherin and activation of its transcriptional repressor Snail were also found in Smad2–/– mouse epidermis and occurred more frequently in Smad2-negative human SCCs than in Smad2-positive SCCs. Knocking down Snail abrogated Smad2 loss–associated EMT, suggesting that Snail upregulation is a major mediator of Smad2 loss–associated EMT. Furthermore, Smad2 loss led to a significant increase in Smad4 binding to the Snail promoter, and knocking down either Smad3 or Smad4 in keratinocytes abrogated Smad2 loss–associated Snail overexpression. Our data suggest that enhanced Smad3/Smad4-mediated Snail transcription contributed to Smad2 loss–associated EMT during skin carcinogenesis.
Kristina E. Hoot, Jessyka Lighthall, Gangwen Han, Shi-Long Lu, Allen Li, Wenjun Ju, Molly Kulesz-Martin, Erwin Bottinger, Xiao-Jing Wang
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 586 | 72 |
74 | 22 | |
Figure | 260 | 16 |
Table | 36 | 0 |
Supplemental data | 44 | 3 |
Citation downloads | 57 | 0 |
Totals | 1,057 | 113 |
Total Views | 1,170 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.