Despite its early discovery and high sequence homology to the other VEGF family members, the biological functions of VEGF-B remain poorly understood. We revealed here a novel function for VEGF-B as a potent inhibitor of apoptosis. Using gene expression profiling of mouse primary aortic smooth muscle cells, and confirming the results by real-time PCR using mouse and rat cell lines, we showed that VEGF-B inhibited the expression of genes encoding the proapoptotic BH3-only proteins and other apoptosis- and cell death–related proteins, including p53 and members of the caspase family, via activation of VEGFR-1. Consistent with this, VEGF-B treatment rescued neurons from apoptosis in the retina and brain in mouse models of ocular neurodegenerative disorders and stroke, respectively. Interestingly, VEGF-B treatment at the dose effective for neuronal survival did not cause retinal neovascularization, suggesting that VEGF-B is the first member of the VEGF family that has a potent antiapoptotic effect while lacking a general angiogenic activity. These findings indicate that VEGF-B may potentially offer a new therapeutic option for the treatment of neurodegenerative diseases.
Yang Li, Fan Zhang, Nobuo Nagai, Zhongshu Tang, Shuihua Zhang, Pierre Scotney, Johan Lennartsson, Chaoyong Zhu, Yi Qu, Changge Fang, Jianyuan Hua, Osamu Matsuo, Guo-Hua Fong, Hao Ding, Yihai Cao, Kevin G. Becker, Andrew Nash, Carl-Henrik Heldin, Xuri Li
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 497 | 114 |
144 | 38 | |
Figure | 334 | 9 |
Table | 109 | 0 |
Supplemental data | 54 | 4 |
Citation downloads | 102 | 0 |
Totals | 1,240 | 165 |
Total Views | 1,405 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.