In this issue of the JCI, Nissen et al. report that a reciprocal interaction exists between the growth factors FGF2 and PDGF-BB, causing tumors to exhibit increased angiogenesis and metastatic potential (see the related article beginning on page 2766). Both FGF2 and PDGF-BB signal through tyrosine kinase receptors, which have been the target of tyrosine kinase inhibitors for cancer therapies. These inhibitors are usually small molecules that inhibit the kinase activity of a receptor or nonreceptor tyrosine kinase, preventing downstream signaling. The results of this study shed light on why tyrosine kinase inhibitors have been useful for the treatment of only a small number of advanced cancers. Currently, a major focus of pharmaceutical companies is to develop ever more potent and specific tyrosine kinases. The results presented here suggest that this approach may not be successful.
Jack L. Arbiser
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 119 | 27 |
80 | 23 | |
Figure | 47 | 3 |
Citation downloads | 39 | 0 |
Totals | 285 | 53 |
Total Views | 338 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.