Atherosclerosis is an inflammatory disease that is associated with monocyte recruitment and subsequent differentiation into lipid-laden macrophages at sites of arterial lesions, leading to the development of atherosclerotic plaques. PLC is a key member of signaling pathways initiated by G protein–coupled ligands in macrophages. However, the role of this enzyme in the regulation of macrophage function is not known. Here, we studied macrophages from mice lacking PLC β2, PLC β3, or both PLC isoforms and found that PLC β3 is the major functional PLC β isoform in murine macrophages. Although PLC β3 deficiency did not affect macrophage migration, adhesion, or phagocytosis, it resulted in macrophage hypersensitivity to multiple inducers of apoptosis. PLC β3 appeared to regulate this sensitivity via PKC-dependent upregulation of Bcl-XL. The significance of PLC β signaling in vivo was examined using the apoE-deficient mouse model of atherosclerosis. Mice lacking both PLC β3 and apoE exhibited fewer total macrophages and increased macrophage apoptosis in atherosclerotic lesions, as well as reduced atherosclerotic lesion size when compared with mice lacking only apoE. These results demonstrate what we believe to be a novel role for PLC activity in promoting macrophage survival in atherosclerotic plaques and identify PLC β3 as a potential target for treatment of atherosclerosis.
Zhenglong Wang, Bei Liu, Ping Wang, Xuemei Dong, Carlos Fernandez-Hernando, Zhong Li, Timothy Hla, Zihai Li, Kevin Claffey, Jonathan D. Smith, Dianqing Wu
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 484 | 34 |
99 | 25 | |
Figure | 269 | 20 |
Supplemental data | 46 | 0 |
Citation downloads | 55 | 0 |
Totals | 953 | 79 |
Total Views | 1,032 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.