Our understanding of magnesium (Mg2+) regulation has recently been catapulted forward by the discovery of several disease loci for monogenic disorders of Mg2+ homeostasis. In this issue of the JCI, Groenestege et al. report that their study of a rare inherited Mg2+ wasting disorder in consanguineous kindred shows that EGF acts as an autocrine/paracrine magnesiotropic hormone (see the related article beginning on page 2260). EGF stimulates Mg2+ reabsorption in the renal distal convoluted tubule (DCT) via engagement of its receptor on the basolateral membrane of DCT cells and activation of the Mg2+ channel TRPM6 (transient receptor potential cation channel, subfamily M, member 6) in the apical membrane. These authors show that a point mutation in pro-EGF retains EGF secretion to the apical but not the basolateral membrane, disrupting this cascade and causing renal Mg2+ wasting. This work is another seminal example of the power of the study of monogenic disorders in the quest to understand human physiology.
Shmuel Muallem, Orson W. Moe
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 189 | 81 |
109 | 42 | |
Figure | 137 | 4 |
Citation downloads | 39 | 0 |
Totals | 474 | 127 |
Total Views | 601 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.