MHC class I–restricted CD8+ T cells are necessary to mount an immune response against Mycobacterium tuberculosis. M. tuberculosis antigens can enter MHC class I cross-processing pathways through a number of different mechanisms, including via the uptake of antigen-containing apoptotic vesicles released by infected cells. A study in this issue of the JCI by Hinchey and colleagues shows that M. tuberculosis inhibits host cell apoptosis and thus may interfere with optimal cross-priming and action of CD8+ T cells (see the related article beginning on page 2279). M. tuberculosis genetically modified to induce apoptosis is shown to be more effective in priming CD8+ T cells in vivo and therefore may be a more effective vaccine against tuberculosis than the currently utilized M. bovis BCG vaccine.
W. Henry Boom
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 252 | 19 |
83 | 25 | |
Figure | 52 | 3 |
Citation downloads | 45 | 0 |
Totals | 432 | 47 |
Total Views | 479 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.