Activation of transcription factor NF-κB, the major regulator of the inflammatory response, depends on the inhibitor of NF-κB kinase (IKK) complex, which is composed of 2 catalytic subunits, IKK1 and IKK2 (also known as IKKα and IKKβ), and a regulatory subunit, IKKγ (also known as NEMO). In this issue of the JCI, Mourkioti et al. show that muscle-specific disruption in mice of the gene encoding IKK2 prevents NF-κB activation in response to denervation or toxin-induced injury (see the related article beginning on page 2945). Importantly, this genetic manipulation prevents muscle wasting, thereby providing strong evidence in support of a major pathogenic role for inflammation in a variety of muscular dystrophies characterized by progressive muscle fiber degeneration.
Michael Karin
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 280 | 30 |
99 | 18 | |
Figure | 55 | 2 |
Citation downloads | 44 | 0 |
Totals | 478 | 50 |
Total Views | 528 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.