Erythropoiesis is critically dependent on erythropoietin (EPO), a glycoprotein hormone that is regulated by hypoxia-inducible factor (HIF). Hepatocytes are the primary source of extrarenal EPO in the adult and express HIF-1 and HIF-2, whose roles in the hypoxic induction of EPO remain controversial. In order to define the role of HIF-1 and HIF-2 in the regulation of hepatic EPO expression, we have generated mice with conditional inactivation of Hif-1α and/or Hif-2α (Epas1) in hepatocytes. We have previously shown that inactivation of the von Hippel–Lindau tumor suppressor pVHL, which targets both HIFs for proteasomal degradation, results in increased hepatic Epo production and polycythemia independent of Hif-1α. Here we show that conditional inactivation of Hif-2α in pVHL-deficient mice suppressed hepatic Epo and the development of polycythemia. Furthermore, we found that physiological Epo expression in infant livers required Hif-2α but not Hif-1α and that the hypoxic induction of liver Epo in anemic adults was Hif-2α dependent. Since other Hif target genes such phosphoglycerate kinase 1 (Pgk) were Hif-1α dependent, we provide genetic evidence that HIF-1 and HIF-2 have distinct roles in the regulation of hypoxia-inducible genes and that EPO is preferentially regulated by HIF-2 in the liver.
Erinn B. Rankin, Mangatt P. Biju, Qingdu Liu, Travis L. Unger, Jennifer Rha, Randall S. Johnson, M. Celeste Simon, Brian Keith, Volker H. Haase
Inactivation of Hif-2α suppresses the development of polycythemia in PEPCK-Vhlh mutant mice.