We describe a metabolic defect in bile acid synthesis involving a deficiency in 7alpha-hydroxylation due to a mutation in the gene for the microsomal oxysterol 7alpha-hydroxylase enzyme, active in the acidic pathway for bile acid synthesis. The defect, identified in a 10-wk-old boy presenting with severe cholestasis, cirrhosis, and liver synthetic failure, was established by fast atom bombardment ionization-mass spectrometry, which revealed elevated urinary bile acid excretion, a mass spectrum with intense ions at m/z 453 and m/z 510 corresponding to sulfate and glycosulfate conjugates of unsaturated monohydroxy-cholenoic acids, and an absence of primary bile acids. Gas chromatography-mass spectrometric analysis confirmed the major products of hepatic synthesis to be 3beta-hydroxy-5-cholenoic and 3beta-hydroxy-5-cholestenoic acids, which accounted for 96% of the total serum bile acids. Levels of 27-hydroxycholesterol were > 4,500 times normal. The biochemical findings were consistent with a deficiency in 7alpha-hydroxylation, leading to the accumulation of hepatotoxic unsaturated monohydroxy bile acids. Hepatic microsomal oxysterol 7alpha-hydroxylase activity was undetectable in the patient. Gene analysis revealed a cytosine to thymidine transition mutation in exon 5 that converts an arginine codon at position 388 to a stop codon. The truncated protein was inactive when expressed in 293 cells. These findings indicate the quantitative importance of the acidic pathway in early life in humans and define a further inborn error in bile acid synthesis as a metabolic cause of severe cholestatic liver disease.
K D Setchell, M Schwarz, N C O'Connell, E G Lund, D L Davis, R Lathe, H R Thompson, R Weslie Tyson, R J Sokol, D W Russell
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 324 | 198 |
84 | 156 | |
Citation downloads | 52 | 0 |
Totals | 460 | 354 |
Total Views | 814 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.