Adenosine, long known as a regulator of cardiovascular function, has recently been identified as a significant paracrine inhibitor of inflammation that acts primarily by activation of A2A adenosine receptors (A2AARs) on lymphoid or myeloid cells. In this issue of the JCI, Yang et al. describe a proinflammatory phenotype resulting from deletion of the gene encoding the A2B adenosine receptor (A2BAR) in the mouse, suggesting that activation of the A2BAR can also have antiinflammatory effects (see the related article beginning on page 1913). Nevertheless, the role of the A2BAR remains enigmatic since its activation can either stimulate or inhibit the release of proinflammatory cytokines in different cells and tissues.
Joel Linden
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 358 | 35 |
93 | 14 | |
Figure | 49 | 2 |
Table | 48 | 0 |
Citation downloads | 57 | 0 |
Totals | 605 | 51 |
Total Views | 656 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.