Celiac disease is associated with HLA-DQ2 and, to a lesser extent, HLA-DQ8. Type 1 diabetes is associated with the same DQ molecules in the opposite order and with possible involvement of trans-encoded DQ heterodimers. T cells that are reactive with gluten peptides deamidated by transglutaminase 2 and invariably restricted by DQ2 or DQ8 can be isolated from celiac lesions. We used intestinal T cells from celiac patients to map DQ2 and DQ8 epitopes within 2 representative gluten proteins, α-gliadin AJ133612 and γ-gliadin M36999. For α-gliadin, DQ2- and DQ8-restricted T cells recognized deamidated peptides of 2 separate regions. For γ-gliadin, DQ2- and DQ8-restricted T cells recognized deamidated peptides of the same region. Some γ-gliadin peptides were recognized by T cells in the context of DQ2 or DQ8 when bound in exactly the same registers, but with different requirements for deamidation; deamidation at peptide position 4 (P4) was important for DQ2-restricted T cells, whereas deamidation at P1 and/or P9 was important for DQ8-restricted T cells. Peptides combining the DQ2 and DQ8 signatures could be presented by DQ2, DQ8, and trans-encoded DQ heterodimers. Our findings shed light on the basis for the HLA associations in celiac disease and type 1 diabetes.
Stig Tollefsen, Helene Arentz-Hansen, Burkhard Fleckenstein, Øyvind Molberg, Melinda Ráki, William W. Kwok, Günther Jung, Knut E.A. Lundin, Ludvig M. Sollid
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 619 | 275 |
115 | 30 | |
Figure | 268 | 15 |
Table | 154 | 0 |
Supplemental data | 45 | 4 |
Citation downloads | 81 | 0 |
Totals | 1,282 | 324 |
Total Views | 1,606 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.