The pathobiology of pulmonary arterial hypertension (PAH) includes endothelial cell dysfunction and proliferation and migration of VSMCs. As PDGF has been implicated in these processes, Schermuly et al. hypothesized that altered PDGF signaling may be involved in the vascular remodeling observed in PAH. To explore this notion further, the authors evaluated the effects of the PDGF receptor inhibitor STI571 in 2 different animal models of pulmonary hypertension. In both models, after development of pulmonary vascular disease, administration of STI571 reversed pulmonary vascular changes. These studies provide preclinical proof of concept for the clinical development of a PDGF inhibitor as a targeted therapy for PAH patients.
Robyn J. Barst
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 399 | 201 |
74 | 59 | |
Figure | 123 | 5 |
Citation downloads | 46 | 0 |
Totals | 642 | 265 |
Total Views | 907 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.