Despite recent advances in preventing sudden cardiac death (SCD) due to cardiac arrhythmia, its incidence in the population at large has remained unacceptably high. Better understanding of the interaction among various functional, structural, and genetic factors underlying the susceptibility to, and initiation of, fatal arrhythmias is a major goal and will provide new tools for the prediction, prevention, and therapy of SCD. Here, we review the role of aberrant intracellular Ca2+ handling, ionic imbalances associated with acute myocardial ischemia, neurohumoral changes, and genetic predisposition in the pathogenesis of SCD due to cardiac arrhythmia. Therapeutic measures to prevent SCD are also discussed.
Michael Rubart, Douglas P. Zipes
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,282 | 237 |
169 | 37 | |
Figure | 312 | 19 |
Citation downloads | 116 | 0 |
Totals | 1,879 | 293 |
Total Views | 2,172 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.